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Abstract-Melting within a rotating vertical cylinder heated at constant temperature is studied numerically. 
The problem is examined for a phase-change material of constant thermal properties. initially at the fusion 
temperature, assuming adiabatic conditions at the top and bottom of the enclosure. Natural convection 
and surface tension effects are neglected to study the fundamental coupling between rotation and melting. 
The governing equations for axisymmetric flow in the melt region are solved using computer-generated, 
body-fitted curvilinear coordinates, considering either a free or a no-slip boundary condition imposed at 
the top of the melt for a fixed bottom wall. The rotation-induced secondary flow within the cavity is found 
to play a role similar to that of natural convection in a non-rotating mould when the Prandtl number is 
of the order of one and higher, indicating a strong coupling between rotation and melting. At sufficiently 
high Reynolds numbers, a thermal boundary layer is formed all over the phase-change interface in the 
closed cavity and over its lower portion for a free surface at the top of the melt. For a low Prandtl number, 
coupling is weak, the interface remains straight and both the main and secondary flows are confined to a 

boundary layer at the rotating cylinder. 

1. INTRODUCTION 

IT IS Now a well-documented fact that the phase- 
change of materials inside moulds can be greatly 
affected by convection, either free or forced, within 
the melt. Considerable experimental evidence has con- 
firmed that convection influences the phase-change 
rate as well as the shape and progression of the solid- 
liquid interface, once the process has begun. In par- 
ticular, the solidification of molten metals has received 
special attention over the past 20 years or so, since 
the final grain structure of a metal is largely deter- 
mined during the solidification of the melt [l]. The 
investigations of several workers on this subject 
clearly showed that the crystalline structure of the 
solidified metals is strongly dependent upon fluid flow 
history in the melt pool, regardless of whether the 
fluid was set into motion by free [2-4] or mixed free 
and forced convection [S-7]. 

In particular, Vi& [8] examined the influence of a 
forced Couette flow during the solidification of super- 
heated tin in a mould made out of a pair of concentric 
cylinders. The flow was driven by the rotating outer 
cylinder. His investigations were restricted to the 
examination of the main hydrodynamic and thermal 
parameters directly related to the crystal structure 
of the solidified tin. He reported the existence of an 
unexpected secondary flow at the bottom of the 
mould, similar to that produced by strong natural 
convection, which he suspected to be a wall effect. 
However, the exact nature of this flow was not 
immediately clear under his experimental conditions, 
for which the ratio Gr/Re’ was of the order of 10, in- 
dicating a rather dominant natural convection mode. 

It turned out that this secondary flow, and not the 
primary Couette flow, was responsible for the diminu- 
tion of the average grain diameter observed over most 
of the cross-section area of the metal samples. except 
near the outer radius, where the tangential velocity 
was important in the melt and the subsequent grain 
structure of the metal radically different. 

The general problem of fluid flow between two 
rotating cylinders, including as a special case the fam- 
ous Taylor problem, is of great theoretical and prac- 
tical interest and has received a lot of attention so far 
[9]. On the other hand, comparatively little work has 
been done on the process of phase-change between 
rotating cylinders [8, 10, 1 I]. One of the potential 
applications of this set-up would be the control of 
crystal growth in a microgravity environment. The 
actual phase-change process of a metal between 
rotating cylinders is quite complex and experimental 
measurements are hard to perform. Hydrodynamic 
instabilities can occur, among other things, if the inner 
cylinder is rotating faster than a critical angular speed. 
The present study would like to address more specifi- 
cally the question of exactly how the secondary flow 
is generated in a rotating cylindrical enclosure and 
what are the most important parameters to consider 
if one is mainly interested in the overall phase-change 
effects, such as the melting rate as a function of the 
speed of rotation, the cylinder aspect ratio and the 
Prandtl number. For this purpose, let us consider the 
phenomenon in an enclosure similar to that of Vi&, 
that is, with a fixed bottom, in which solidification 
is replaced by the melting of a solid at the fusion 
temperature. There is then no heat conduction in the 
solid and the flow problem can be solved separately. 
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NOMENCLATURE 

contravariant components of the metric 
tensor (a” = &?+ [t; 
u’? = 5,&+&q,; 
“22 = q;+$) 
specific heat-[J kg- ’ Km ‘1 
scalar function 
gravity [m s - ‘1 
Jacobian, riz,, - zcrq 
thermal conductivity [J s- ’ m- ’ K- ‘1 
latent heat of fusion [J kg- ‘1 
cylinder height [m] or aspect ratio 
normal direction at the liquid-solid 
boundary 
unit vector along the normal (n,, n,) 
local Nusselt number 
dynamic pressure [Pa] 
Peclet number, Re Pr 
Prandtl number, V/E 
coordinate [m] 
Reynolds number, Qri/v 
time [s] 
temperature [“Cl 
velocity vector, (24, v, W) [m s- ‘1 

U ‘, U’ contravariant velocity components 
in the <, q plane 

z coordinate [ml. 

Greek symbols 
thermal diffusivity [m’ s - ‘1 
rv product [m’ s- ‘1 
Stefan number, c( T, - T,)/l 
transformed coordinate 
angular coordinate 
kinematic viscosity [m’ s - ‘1 
transformed coordinate 
density [kg m-‘1 
dimensionless time 
parameters 
stream function [m’ s- ‘1 
vorticity vector, (w,, oO, w,) [s- ‘1 
angular velocity [s ‘I. 

Subscripts and superscripts 
f value at the liquid-solid interface 
i, i integers 
0 value at the outer cylinder. 

Other symbols 
V gradient 
V* divergence 
V2 Laplacian 
62 transformed Laplacian 

derivative. 

1 

In order to study the pure coupling between the 
rotation-induced secondary flow and melting, natural 
convection and surface tension effects will not be con- 
sidered at all. The effect of having either a free surface 
at the top of the melt or a fixed wall will be examined. 
The influence of the Prandtl number will be assessed 
by comparing the results obtained for the case of a 
low value, corresponding to that of tin at melting 
point, and a relatively high value, corresponding to 
that of water at room temperature. 

2. MATHEMATICAL FORMULATION 

The geometry of the problem is shown sche- 
matically in Fig. 1. The liquid melt is assumed to be 
an incompressible fluid of constant thermal proper- 
ties. Only the forced, axisymmetric convection flow 
driven by the outer rotating cylinder is being studied 
here, leaving aside any buoyancy-induced motions 
within the molten material. If a free surface is con- 
sidered at the top of the melt, it is assumed to remain 
flat at all times and to be free of surface tension effects. 
Neglecting viscous heating, the appropriate form of 
the governing equations will be 

au ~+(u-v)u= -~+vv’u 

1 

aT 
z+(~*V)T= uV2T. (3) 

The no-slip boundary condition applies for the vel- 
ocity vector components u(r,z), v(r,z) and w(r, z), 

v*u=o (1) FIG. 1. Geometry and coordinate system. 
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which are required to vanish at all the solid bound- as 
aries, except at r = ro, where the L’ component is given 
by 

1 ati UC-- 
r a2 (114 

v=Rr,; r = ro. (4) 
1 w 

When a free surface is present at z = f., the no-slip 
),I = - - - 

r ar 
(1 lb) 

condition is relaxed for a no-shear condition yielding 
2 ati au au i=W”=V’$-;z. (1 ICI 

z=z= w=O; z=L. (5) 
The continuity equation (I) is then automatically 

The temperature field T(r, z) must satisfy in any satisfied, while the vorticity and stream function equa- 
case tions (8) and (1 Ic) must be solved together with 

T= T,; r=r,, 

T = T, ; r = rf 

(64 

(6b) 
au 
r 

!!T=,. 
aZ ’ z = 0, L. (64 

The pressure field may be eliminated in the usual 
way by taking the curl of the momentum equation 
(2), which leads to the transport equation 

aa z +(u’V)o-((w’V)U = VV’W (7) 

for the vorticity vector o. The 0 component of this 
equation is given by 

The change of variable I- = rv eliminates the uv 
term above, but before we proceed any further, it is 
preferable to seek a non-dimensional formulation of 
the problem. Introducing the appropriate dimen- 
sionless variables 

(r,z,n)’ = (r,z,n)/r,; (u, w)’ = (u, w)/L!r, 

7 = mf/r$ : w’ = o&2; I)’ = $/!2ri 

T’= (T-T,)/(T,-T,); r’= r/fir: (13) 

and dropping the superscripts from now on, the 
dimensionless counterparts of equations (3) (8) and 
(I 2) may be written in compact form as follows 

where by definition 

au aw 
We=&-%’ 

This formulation makes it clear that a secondary 
flow must be expected in the (r, z) plane as soon as a 
radial vorticity component o, = -av/dz is present. 
Vortex stretching, which is accounted for by the 
(o+V)u term in equation (7), is responsible for the 
appearance of v dv/dz in equation (8), where it acts as 
a source term. Without this source, there cannot be 
any secondary flow at all. 

Neither the position nor the shape of the melting 
front are known a priori. Nevertheless, a simple 
energy balance at the liquid-solid interface gives an 
equation from which they can be determined. 
Assuming that there is no density variation of the 
material during phase-change, the appropriate form 
of the equation will be 

giving the required interface propagation speed at 
each point. The axial symmetry of the problem allows 
a stream function formulation for the velocity com- 
ponents u, w and the vorticity w0 itself, which may 
then be expressed in terms of the stream function $ 

The other homogeneous conditions remain ident- 
ical in either form. In terms of the dimensionless vari- 
ables, the interface equation (IO) becomes 

an a7- -=-- a7 an (17) 

(14) 

where the so-called source terms on the right-hand 
side are given by 

0 I 

( > 
2 ar 

sc.=T u-= +,‘rz (IW 

2 ar 
Sr=-rRe. (15b) 

The stream function equation (1 lc) is left 
unchanged and supplies the boundary conditions for 
w. For $ itself, the appropriate condition is simply 
J, = 0. Meanwhile, conditions (4) for o and (6) for T 
become, respectively, in non-dimensional form 

T=r=l; r=I 

T=O; r=ry 
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which may alternatively be split into components as 

ah ar 
-= 
a7 - TG”r 

arr dT 
-= 
aT -an”: 

(184 

(18b) 

and integrated in order to find the interface position 
as a function of time. 

3. SOLUTION PROCEDURE 

3. I. Boundary$tted coordinates 
The governing equations for heat and fluid flow in the 

melt region are solved in boundary-fitted curvilinear 
coordinates. Adaptive grids are computer-generated 
for this purpose according to the general coordinate 
transformation method exposed by Thompson et 
al. [12], which allows a good control of the grid 
points distribution within the calculation domain and 
ensures orthogonality on the boundaries. The trans- 
formation is achieved by solving the elliptic-type 
equations 

[a ’ I (a;< + 4a,) + 2a I *a;,, 

+a**(a;,,+~a,,)] I' = 
(> (1 z ; (19) 

whose solution gives the image coordinates (r,,, zi,) of 
an arbitrary grid point (<,, q,) once the boundary 
conditions have been specified on the contour of the 
rectangular domain shown in Fig. 2. These conditions 
are nothing but the coordinates of selected boundary 
points in the (r, z) plane which are assigned as images 
to the boundary points of the rectangular (5,~) 
domain. The above may then be solved by finite-dif- 
ferences in order to generate the curvilinear, boundary- 
fitted grid of the (r,z) plane from the uniform, 
rectangular grid of the ({, n) plane. Furthermore, as 
the grid point distribution must follow the continuous 
deformation of the flow domain, a new grid has to 
be generated at each time step. The position of the 
interface nodes at time 7 + A7 is determined from their 
previous position at time T. The interface nodes are 

r 

prone, however, either to converge towards a single 
point, or to diverge too much from one another. It is 
advisable in these circumstances to redistribute the 
nodes on the interface before a new grid is generated. 
This is accomplished by means of an interpolation by 
cubic splines from which the grid point distribution 
on the interface, and consequently within the cavity, 
can be controlled at will. 

3.2. Transformed equations 
The coordinate transformation is carried out in 

such a way that the moving interface in the physical 
domain is immobilized at q = I, so that the governing 
equations are solved within the fixed domain 
0 < r < 1, 0 < q < I at all times during the melting 
process. One may pass from the (r,z) system to the 
(l,~) system by substituting r = r(c,q,7) and 
z = ~(5, ‘I, T) into the original set of equations (1 Ic), 
(14) and (I 5). The following correspondence rules are 
readily established 

./:,(r, 5 7) =.M., +L,rl., (20) 

f,(rT 5 7) =fA +fg~.~ (21) 

.L(r, z, 7) =./I, +f&, +./I,v.~ (22) 

for the first-order derivatives of a scalar function f 
where the right-hand sides are expressed in terms of 
the new variables ((,q,r). Let us mention that the 
quasi-stationary approximation made by Sparrow et 
al. [l3], which neglects the second and third terms on 
the right-hand side of equation (22), is not of great 
consequence for small Stefan numbers, as Wu et al. 
have confirmed in a previous study [14]. 

For the advection terms, the rules of tensor calculus 
require that 

ufr + IC!f: = u ye + u *x,. (23) 

The components CJ ‘, I!’ of the contravariant vel- 
ocity vector in the (r, q) system are given by 

U’ = u5.r+~4t: = iti.,, (24) 

u* = uq,,+wq,.- = - $$.,. (25) 

FIG. 2. Transformation of coordinates. 
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For the diffusion terms, the transformed Laplacian 
may be written after some manipulation (e.g. 
Prud’homme et al. [ 151) as 

62f= a”C~;c+~~~)+2a’2~;,, 

+a2YL+dJ+ ~UX.,+QL). (26) 

The original system of equations (1 lc), (14) and 
(15) may now be reformulated easily in terms of the 
new variables, giving 

‘o/Re 

T/Re 

TIPe 

(27) 

where 

(284 

while 

(29) 

On the left-hand side of equation (27), it should be 
remembered that 

It may be seen that the Stefan number appears 
only in front of the time derivatives. Consequently, 
the instantaneous flow field within the cavity is not 
much different from the steady-state flow in a non- 
deforming cavity of identical shape, as long as the 
Stefan number remains sufficiently small. 

Boundary conditions are transformed in the same 
way. The rectangular contour in the (5, II) plane still 
corresponds to the streamline $ = 0, whereas the no- 
slip condition requires that $.< = $., = 0 everywhere 
except on the free surface. Since the new coordinates 
are orthogonal on the boundaries, equation (29) may 
be simplified further to supply the conditions 

co=q*.,,; r=o,1 (314 

22 

w = c $.qq ; 
r 

‘I = 0,l (JIbI 

for vorticity, as long as the no-slip condition holds. 
As far as T and r are concerned, the set of conditions 
(16) becomes 

T=O; [=O Wd 

T=T=l; <=I Wb) 

T,,, = 0 ; q = 0, 1 (32~) 

while I- = 0 on the remaining boundaries. When the 
free surface is considered, the above conditions are 
relaxed locally for 

r.s = 0 =o; 9 = I. 

Finally, transforming equation (18) gives 

(33) 

r,r = - T.&t, 

z,, = - T,<[,, 

(344 

Wb) 

for the melting front, which can be integrated numeri- 
cally to find the position and shape of the interface at 
a given time. 

3.3. Numerical solution 
Numerical calculations of the flow field were carried 

out based on the finite-difference solution of the trans- 
formed set of governing equations in the (5,~) plane. 
The discretization process was greatly simplified by 
the uniform grid shown in Fig. 2. All time-dependent 
equations were treated according to the implicit 
scheme. The advection terms in equation (27) were 
discretized according to a second-order upwind 
scheme in order to ensure numerical stability during 
the computations, while the remaining terms were 
discretized according to the usual central-difference 
formulas for a uniform grid. 

The solution algorithm selected to solve the system 
of discretized equations was based on the quasi-static 
approach, which solves separately the equations for 
w, 0, I- and IJ at each time step, and only then for the 
interface equation. 

Calculations were started at T = 0 with zero field 
values for all variables except for O,, which was set 
equal to 1 at 5 = 1 and equal to 0 elsewhere. The time 
step was adjusted so that the molten volume would 
never increase by more than one per cent over a time 
interval of AT. Computations were carried out using 
in most cases 15 nodes along 5 and 25 nodes along 9 
on an IBM 3900 computer. For a typical calculation, 
the time step was chosen equal to AT = 1 x 10m4. 
From 75 to 85 iterations per step are then needed on 
average to obtain a converged solution. The com- 
putation time required was around 10 CPU seconds 
per time step. 

4. RESULTS 

4.1. Validation of the computer program 
In order to test the computer program, a series of 

Taylor vortex flow calculations were performed, for a 
range of parameters corresponding to those used by 
Meyer [16] and Alonso and Macagno [ 17] and the 
results compared against their data. In this test 
problem, the flow is isothermal and there is no phase- 
change involved at all. Consequently, the geometry 
under consideration is not quite as sketched in Fig. 1. 
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The moving interface at rr is simply replaced by a 
cylinder with radius r, < rO. The boundary conditions 
are also reversed for the tangential velocity D, namely, 
the outer cylinder is held fixed and the inner cylinder 
is rotating, so that Taylor cells can be generated in the 
fluid. This classical hydrodynamic stability problem 
was solved using only the isothermal form of the equa- 
tions, for which the Stefan and Peclet numbers are no 
longer relevant parameters. All the tests were done for 
an aspect ratio L = 0.47, and a radii ratio of I .2, using 
an I I by 1 I uniform grid, with a time step AT of 0.1. 
The numerical solution procedure was found to be 
computationally stable in all cases, even with these 
coarse grids and large time steps. 

Figure 3 shows the steady-state streamline pattern 
obtained for Re = 2000. A closer examination reveals 
that the cell pattern is symmetrical with respect to a 
horizontal line passing through the centre of the 
cavity. The four cells are similar in shape and intensity 
to those obtained by Meyer for L = 0.42 and 
L = 0.50, with the obvious difference that the present 
computations are carried out for an intermediate 
aspect ratio L = 0.47. It must also be pointed out that 
the present study assumes no-slip conditions at z = 0, 
L, corresponding to fixed end walls, instead of the 
periodic conditions of Meyer and Alonso. Identical 
results cannot be expected, therefore, as the cells are 
not only the product of a hydrodynamic instability, 
as they would be if periodic conditions were applied, 
but are also driven in part by pressure gradients at the 
top and bottom of the cavity. I f  the Reynolds number 
is set low enough, the inner pair of cells becomes 
weaker and eventually disappears, leaving only the 
convective cells at the top and bottom, which are 
always present regardless of how low Re is, as long as 
it is not zero. 

How these two cells arise physically is best under- 
stood by considering the pressure field distribution 

a 
0 

0 

0 

a 
0 

0 

0 
FIG. 3. Streamline configuration for test problem: 

Re = 2000, L = 0.47, ro/ri = I .2. 

0.6 

.r%?=764J 

AR.2=lOCXl 
0Rl?=ZCOO 

-results by Alonsa 

FIG. 4. Tangential velocity profiles at centre of inner vortex 
cell: He = 760, 1000, 2000, L = 0.47, t-“/r, = 1.2. 

within the fluid. It is well known that when a stream- 
line is curved, there must be a net pressure gradient 
along the normal direction to the streamline, in order 
to provide the centripetal acceleration of the fluid 
particles. Consequently, the pressure must increase 
here in the radial direction as a result of the streamline 
curvature of the main azimuthal v  flow. This increase 
does not occur evenly along the vertical z direction, 
being more important in the central region of the 
cavity and less important near the top and bottom 
walls, where v  is damped to zero by viscosity. A net 
vertical pressure gradient Lip/& is thereby established 
which drives a secondary flow with velocity com- 
ponents u and w. Alternatively, one can say that vis- 
cous shear at the horizontal walls generates a radial 
vorticity component, which in turn drives the sec- 
ondary flow through vortex stretching. 

The influence of the Reynolds number on the tan- 
gential velocity is depicted next in Fig. 4, where v  is 
plotted against rat the centre of one of the Taylor cells 
in the inner region of the cavity, where the pressure 
distribution is nearly constant in the z direction. An 
interesting basis for comparison is provided by the 
results of Alonso for Re = 760, 1000 and 2000. The 
agreement is very good indeed over most of the gap 
widths. 

4.2. Meltimj at high Prandtl numbers 
The melting process is examined first for a high- 

Prandtl number fluid. A value of Pr = 7 was chosen, 
which corresponds roughly to that ofwater at ambient 
temperature. Results are presented below for 
Re = 140 and 2000, at various times during melting, 
considering both the no-slip and free surface con- 
ditions imposed at the top of the melt. Numerical 
solutions were obtained for a Stefan number E = 0.15 
and a time step AT = IO- 3, using an I I by IS grid for 
the low Reynolds number runs, and a 15 by 25 grid for 
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the high Reynolds number. The computations were 
started by assuming the existence of an isothermal 
thin melt layer, of a thickness equal to 2% of the outer 
cylinder radius. The temperature of this initial melt 
layer was set equal to the fusion temperature of the 
material, as mentioned before. 

Figure 5(a) shows the streamline and isotherm pat- 
terns obtained within the melt for Re = 140. No 
Taylor vortices are involved in this case, since the 
outer cylinder is rotating and the inner boundary (the 
solid-liquid interface) is not, which is a stable flow 
configuration from the hydrodynamics point of view. 
The secondary flow in the (r, :) plane is driven exclus- 
ively by the vertical pressure variations discussed 
above. In this case, the pressure is nearly constant 
along the interface at I’ = rr, while the strongest vari- 
ations occur near the rotating cylinder. It is good to 
emphasize that this type of cell can be generated as 
soon as L’ varies in the z direction, which implies the 
existence of the pressure differences needed to drive 
the secondary flow, and does not necessarily require 
the action of viscosity. In fact, we were able to generate 
cells with free surface conditions at both z = 0 and L 
by simply choosing a conical-shaped inner boundary 
instead of a straight vertical cylinder. 

With the no-slip conditions imposed by the fixed 
surface at the top and bottom, the level lines of 9 
and T are perfectly symmetrical with respect to a 
horizontal line across the centre of the cavity, as 
depicted in Figs. 5(a) and (b). For the lower Reynolds 
number Re = 140, the two cells are weak at T = 0.02 
and the isotherms are then nearly straight lines as 
they would be if there was no secondary flow at all. 
Conduction appears to be the dominant heat transfer 
mechanism across the cavity during the early stages 
of the process. Melting and rotation are then only 
weakly coupled together. The solid-liquid interface 
does not show any noticeable change of shape from 
the initial, straight vertical configuration, because the 
heat flux is very nearly uniform along the interface. 
As time goes by, however, the intensity of the cells 
increases and the circulating flow within the melt 
becomes a prominent heat transfer mechanism. The 
growth of the cells with the widening of the melt region 
results in an ever increasing number of hot fluid par- 
ticles being carried out from the outer, warmer, 
boundary to the cooler interface along the horizontal 
walls, enhancing heat transfer near the top and bot- 
tom of the cavity. Melting occurs unevenly, causing a 
noticeable distortion of the interface after some time. 
This phenomenon can be seen on Fig. 5(a) at r = 0.06, 
in what could be called a mixed regime, where con- 
duction remains dominant in the central region of the 
cavity, and convective effects are significant in the top 
and bottom regions. On the other hand, the streamline 
and isotherm patterns at T = 0.12 clearly belong to 
a fully convective regime, characterized by a strong 
coupling between rotation and melting. 

For the higher Reynolds number Re = 2000, Fig. 
5(b) shows that the interface becomes distorted much 

faster, as expected. The isotherm patterns reveal a new 
feature of the problem, that is, that thermal boundary 
layers are being formed at the interface, mostly in the 
top and bottom regions where the secondary flow is 
important. The calculations corresponding to 
Re = 2000 were repeated for a free surface at : = L, 
all other parameters kept constant. The zero vorticity 
condition at the top of the melt allowed smooth and 
fast convergence. The main difference with the closed 
cavity configuration is that there is now only the bot- 
tom surface left to drive the cells in the (r,z) plane. 
Consequently, symmetry is broken and there is only 
one cell, as can be seen in Fig. 5(c). The intensity of 
this single cell is also greater, since it is not competing 
with a second cell rotating in the opposite sense as 
before. The secondary flow is very similar to what 
would be obtained under the influence of natural con- 
vection, with the gravity vector pointing upward on 
the figure. Vives [S] also noticed this similarity. His 
measurements, however, suggested the presence of a 
second cell in the melt, a clear indication of the mixed 
convective nature of his flow. 

The evolution of the average Nusselt number at the 
interface for Re = 2000 is displayed in Fig. 6. The 
Nusselt number is seen to be very high at first, when 
the melt layer is thin and thus the temperature gradi- 
ent very steep. The conductive regime is characterized 
by a sharp decrease of /Vu as the layer becomes thicker, 
and is independent of the boundary condition at the 
top of the melt. The profiles subsequently level off at 
the beginning of the conductive regime and then start 
to decrease slowly again as the thermal boundary 
layers are formed. The profile corresponding to a free 
surface at the top of the melt is somewhat lower. The 
corresponding isotherm patterns of Fig. 5(c) reveal 
that in this case, a thermal boundary layer is formed 
simultaneously at the interface in the bottom region 
and also at the rotating surface in the top region, 
where it will tend to oppose heat transfer across the 
cavity. The growth of a boundary layer along the 
solidifying crust was again reported by Vi&s [8] in his 
experiment, who, unlike in the present computations, 
found a greater boundary layer thickness in the bot- 
tom region. The corresponding molten volume frdC- 

tions for Re = 2000 are plotted in Fig. 7 and compared 
with the pure conduction solution. If  the aspect ratio 
L is changed while all the other parameters are kept 
constant, the molten volume profiles remain similar, 
and decreasing L increases the melting rate, since the 
cells cover a larger area of the cavity space for lower 
aspect ratios. Figure 8 shows the tangential velocity u 
fields at T = 0.12. On this figure, one can notice the 
perfect symmetry of the profile with respect to z = 0.5 
for a fixed surface at the top of the melt and how close 
the profile is to solid-body rotation in the upper part 
of the cavity for the free surface. 

4.3. Melting at low Prandtl numbers 
The case of a low-Prandtl number fluid is con- 

sidered next. The following results are presented for 
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FIG. 5(a). Streamlines and isotherms : Pr = 7, E = 0.15, Re = 140, L = 2, fixed surface at top. 
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FIG. 6. Average Nusselt number at the liquid-solid interface: 
Re=2000.L= l,Pr=7.&=0.15. 

E = 0.14 and Pr = 0.0089, which correspond to tin at 
fusion temperature, as in the experiments of Vives. 
All the results shown correspond to calculations done 
using a non-uniform 15 by 25 grid and a time step 

? 

FIG. 7. Molten volume fraction : Rr = 2000, Pr = 7, E = 0.15. 

AT ranging from IO - ’ to 5 x IO ‘, depending on the 
Reynolds number Re. A grid-dependence test con- 
ducted for Re = 3 x 10’ showed that using a 21 by 42 
grid changed the predicted minimum and maximum 
values of tj by about I%, produced very similar 
streamline patterns and required four times as much 
computer time. Consequently, only the coarser I5 by 
25 grid was used thereafter. Streamline and isotherm 
patterns obtained at different times are presented next. 

FIG. 8. Tangential velocity u at r = 0.02, Re = 2000, L = I, Pr = 7, E = 0.15, fixed surface (top) and free 
surface (bottom). 
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7=0.02 

NU 

7=0.05 

FIG. 9. Streamlines and isotherms: Pr = 0.0089, E = 0.014. 
L = I. Re = 3 x IO’, lixed surface. 

Figure 9 shows the results for Re = 3 x 10J. Unlike 
what happens for Pr = 7, conduction remains the 
main heat transfer mechanism throughout the melting 
process, because the very low value of the Prandtl 
number of the fluid favours thermal diffusion over 
momentum diffusion by two orders of magnitude. 
This is expressed in analytical terms by the first terms 
on the right-hand side of equation (14) where 
Pe = Re Pr. It is then perfectly conceivable to find a 
situation where Re will be high enough for the flow 
to be nearly inviscid over a significant part of the 
cavity volume while, at the same time, thermal con- 
duction will remain the foremost heat transfer mech- 
anism. Even though convective cells are present, the 
interface remains nearly straight at all times. If  the 
Reynolds number is increased up to the value of Vives’ 
experiment [8], that is, 2.5 x 105, the results are quali- 
tatively similar as shown in Fig. 10. The cells remain 

*m, = 0.00070 $‘,mx = 0.00076 
JI min =-0.00070 + min =-0.00076 

T T 

r=O.Ol r=o.o15 

FIG. IO. Streamlines and isotherms: Pr = 0.0089, E = 0.014, 
L = I, Re = 2.5x IO', fixed surface. 

0 0.01 0.02 0.03 0.04 0.05 

T  

FIG. I I. Average Nusselt number at the liquid-solid inter- 
face: Pr = 0.0089. E = 0.014, L = I. 

confined to a narrower region of the cavity, in what 
looks more and more like a boundary layer adjacent 
to the rotating cylinder. Unfortunately, very little 
work has been done so far on the transition to tur- 
bulence with the outer cylinder rotating, as mentioned 
by Busse et al. [ 181 and it is not possible to tell exactly 
when transition would normally occur in the present 
case. Considering the fact that the critical Reynolds 
number for transition to turbulence is based on the 
gap between the cylinders, the flow is certainly laminar 
at the beginning of the process, when the gap is 
narrow. It is known also that streamline curvature has 
a great influence on the intensity of turbulence, and 
can lead to a relaminarization of the flow under 
favourable conditions [19]. In a stable flow con- 
figuration such as here, this phenomenon might delay 
the transition for a certain period of time once melting 
has begun. 

Average Nusselt number profiles at the interface 
are plotted against time in Fig. I I, for both Reynolds 
numbers. The simple fact that the profiles merge 
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FIG. 12. Molten volume fraction: Pr = 0.0089, E = 0.014, 
L= 1. 



Numerical simulation of melting 

tl, ma%=0 *m4x=o 
4 min = -0.00209 t6 rnin = -0.00085 

tp 1 

(jlmz=o 

3 mm = -0.00093 
+ - 

67 

T 

FIG. 13. Streamlines and isotherms: Pr = 0.0089. I: - O.OJ4, L = 1. free surface, Rc = 3 x IO (left). 
Rc = 2.5 x IO5 (right). 
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FIG. 14(a). Tangential velocity or, Pr = 0.0089, E = 0.014, L = 1, Re = 3 x JO4, fixed surface (top) and free 
surface (bottom). 



68 M. PRUD’HOMME er ul. 

0.25 

FIG. 14(b). Tangential velocity v, Pr = 0.0089, E = 0.014, L = 1. RE = 2.5 x IO', fixed surface (top) and 
free surface (bottom). 

almost perfectly is a clear proof that Nz< is virtually the melt. The u profiles are almost independent of z 
independent of Re or, equivalently, of the forced con- except, of course, near the fixed horizontal boundaries 
vection flow. The corresponding molten volume frac- where u = 0. When a free surface is involved, the core 
tions are depicted in Fig. 12, vs time. Both solutions region is less important. The nearly inviscid, boundary 
are virtually undistinguishable from the pure con- layer-type nature of the Row for large Re is made 
duction solution. obvious in Fig. 14(b). 

The calculations were repeated for a free surface at 
z = L, all other parameters kept constant, Figure 13 
shows the I& and T fields obtained in this case. It is 
noticed that the interface remains straight as before 
since we used the same low Prandtl number, that is, 
Pr = 0.0089. At any given time, the single cell for 
RE = 2.5 x 10’ covers a greater part of the cavity vol- 
ume than an individual cell of the corresponding 
bicellular patterns in Fig. 10, because it is always 
stronger. The Nusselt number and molten volume 
fraction profiles are not shown, since they are almost 
identical to those of Figs. 1 I and 12. Another inter- 
esting feature of this problem is the main velocity 
field D. Figure I4 shows that the fluid is practically 
unmoved inside a core region of the cavity extending 
outward from the solid-liquid jnterface to the middle 
and even beyond. This finding is consistent with the 
fact that melting is not infiuenced by convection, since 
the velocities involved are negligible over the bulk of 

5. CONCLUSIONS 

A secondary flow is always present in the melt, 
driven by vertical pressure gradients, related to uneven 
centripetal acceleration of the main flow due to vis- 
cous or geometrical effects. When J?e is large (fast 
rotation), the Row is important only in the vicinity of 
the rotatingcylindrical boundary, and the bulk of the 
fluid is almost at rest, For a low-A fluid, melting 
occurs by conduction, almost independently of 
rotation. For a moderate Pr, melting is strongly affec- 
ted by the secondary flow shortly after the beginning 
of the process. Melting occurs much faster in this 
case, the solid-liquid interface becomes distorted, and 
thermal boundary layers may be formed locally if Re 
is large enough. A free surface at the top of the melt 
produces a single, stronger, secondary cell instead of 
a pair of cells and the melting rate is then slightly 
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lower. Regarding the melting rate, the aspect ratio of 9. 
the enclosure is not an influential parameter as long 
as it is greater than one. When L < I, melting is found 
to occur faster for the smaller values of L. 
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